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It is shown that if a thin liquid layer is brought into the state of steady motion, the surface tension decreases
efficiently for waves propagating along the flow or in opposition to it and the conditions of occurrence of the
instability of a charged liquid surface are made substantially easier.

If an electric charge is supplied to a conducting liquid, the liquid surface begins to fail once a certain thresh-
old density of the charge is exceeded: the electrostatic instability of the liquid is realized [1]. This phenomenon was
described for the first time by Rayleigh as far back as 1882 as applied to spherical droplets and by Ya. I. Frenkel’
and L. Tonks in 1935 for the plane surface of a massive liquid conductor. In recent times, the phenomenon has com-
prehensively been studied [2–5] for different geometries, with allowance for the relaxation processes in the liquid, and
for the cases of parametric excitation of instabilities.

A situation of practical interest exists which has not yet been studied, namely: in all the investigations it was
assumed that, in the initial state (before the development of any instabilities), the liquid is stationary. However hori-
zontal flows exist in the liquid in the most general case. If a massive liquid of infinite depth is to be found in shear
flow with a constant velocity, then, with allowance for the relativity of motion, the conditions of occurrence of insta-
bility remain the same as for a stationary liquid. If there is a horizontal stream of a liquid of finite thickness, the ve-
locity in this liquid is different at different depths and becomes zero at the bottom, and it cannot be eliminated by any
conversion to another reference system. This motion must, apparently, exert an influence on the spectrum of long
waves propagating in parallel to the direction of the flow. For such waves whose length is comparable to or larger
than the thickness of the liquid layer, the conditions of occurrence of surface instability in the electric field must also
change. This work seeks to study surface motions of a conducting liquid of finite depth in the state of a steady flow.

Let us use the following coordinate system: the x axis is directed along the flow, the y axis is directed nor-
mally to the surface upward, and the origin of coordinates is located on an undisturbed surface; the bottom corre-
sponds to the coordinate y = −h (h is the flow depth). We consider the steady undisturbed liquid motion which is
described by the continuity and Navier–Stokes equations. These equations with one nonzero component of the velocity
Vx(y) are rewritten in the form

 
∂Vx

∂x
 = 0 ,   

∂p

∂y
 = 0 ,   − 

∂p

∂x
 + η 

∂2
Vx

∂y
2  = 0

(it has been taken into account that (V∇ )V B 0). Specifying the boundary conditions

Vx y=−h = 0 ,   
∂Vx

∂y



 y=0

 = 0 ,

we obtain

p = 
∂p
∂x

 x ,   Vx = − 
1

2η
 
∂p

∂x
 (h2

 − y
2) ,

Journal of Engineering Physics and Thermophysics, Vol. 75, No. 5, 2002

N. E′ . Bauman Moscow State Technical University, Moscow, Russia; email: alievprof@mtu-net.ru. Translated
from Inzhenerno-Fizicheskii Zhurnal, Vol. 75, No. 5, pp. 86–87, September–October, 2002. Original article submitted
February 12, 2002.

1062-0125/02/7505-1113$27.00  2002 Plenum Publishing Corporation 1113



or, if the velocity u of the liquid surface is introduced, we have

V = u 
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 . (1)

Let us consider the wave motion of the liquid surface. The most important case corresponds to the waves in
directions which are in parallel to the flow. We restrict ourselves to this case in this work. We employ the assumption
of smallness of the amplitude of vibrations (in relation to the wavelength and the liquid depth) [1]. As has been indi-
cated above, the influence of the liquid flow on wave motion should be expected in the longwave limit. It is precisely
this case that will be considered. We denote the deviation of the surface from equilibrium by ξ(x, t). The change in
the horizontal component of the velocity Vx will be quadratic in ξ, while the vertical component of the velocity Vy
will change in proportion to ξ. As a result of linearization, the Navier–Stokes equation (with the use of (1)) is trans-
formed as
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We are interested in the case where the role of the horizontal flow of the liquid is the most important; therefore, we
take uh > ν and uk > ω, where ω and k are the frequency and the wave number for surface motion (the latter inequal-
ity is checked upon completion of computations). Then Eq. (2) yields a simple relationship of the pressure and Vy:
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In the case of a constant horizontal flow on the liquid surface the relation

Vy y=0 = u 
∂ξ
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 . (4)

holds. Computation is made much easier if we assume that such a relation holds throughout the depth of the liquid
(with a natural correction of the horizontal velocity component):

Vy = u 



1 − 

y
2

h
2




 
∂ξ

∂x
 . (5)

Substitution of (5) into (3) and integration for y  going from 0 to h yield the expression for p on the liquid surface:
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The last relation has a simple physical meaning. Indeed, if the surface curvature is written in the form [6] R−1 =

− 
∂2ξ
∂x2

 (where R is the radius of curvature and the surface wave is represented in the form ξ = ξ exp (ikx − iωt)), the

centripetal acceleration of the spinning mass is written as a = u2 ⁄ R, and the effective thickness of the layer is written

in the form l = 
8
15

 h, formula (6) can be represented as p = (ρl)a, i.e., p is the force that provides the centripetal ac-

celeration a for the mass (ρl).
Expressing the pressure by the radius of curvature and using the Laplace formula for the capillary pressure

pc = α ⁄ R, we introduce the effective coefficient of surface tension
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and for the spectrum of capillary waves on the surface of a charged conducting liquid we use the known formula [1]

ω = √ k
2
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2)  . (8)

Here σ0 is the surface density of the charges (related to the electric-field strength by the formula E = 4πσ0).
Let us give the numerical estimates. For mercury (ρ = 13.6 g/cm3) we have αe = 0.4α when u = 10 cm/sec

and the thickness is h = 0.5 cm and αe = 0 when u = 14 cm/sec.
Thus, the result (7) is fundamental: a decrease in the surface tension leads to a reduction in the threshold val-

ues for the electric field in the case of the Frenkel’–Tonks surface instability.

NOTATION

ρ, η, and ν, density and dynamic and kinematic viscosities of the liquid; p and V, pressure and velocity of
the flow; ξ, ω, and k, amplitude, frequency, and wave number of the surface wave; α and αe, ordinary and effective
coefficients of surface tension. Subscripts: c, capillary; e, effective.
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